Problem Set 3 Algorithms Advanced Course TDA250

Per Lindstrand

December 8, 2005

Introduction

Problem Set 3 by Per Lindstrand (muusu@dtek.chalmers.se), 820921-5576.

[NP] Problem 3.1 (NP-completeness) [KT 8.20]

Proposition 1.0.1 (LOW-DIAMETER-CLUSTERING $\in \mathcal{NP}$) There exists a polynomial time certifier for a solution S to an instance $(\{p_1, \ldots, p_n\}, B, d(\cdot, \cdot), k)$ of LOW-DIAMETER-CLUSTERING.

Proof Given a solution S to LOW-DIAMETER-CLUSTERING consisting of m subsets P_1, \ldots, P_m it is possible to verify that S is correct in polynomial time. Verify that $m \leq k$ and then ensure that $d(p_i, p_j) \leq B$ for all $p_i, p_j \in P_l$ for $1 \leq l \leq m$. This is indeed polynomial. In the worst case we have to compare all objects to all other objects, that is n(n-1)/2 comparisons if they're all in the same subset. This is $O(n^2)$.

Proposition 1.0.2 (LOW-DIAMETER-CLUSTERING \mathcal{NP} -complete) Given a set of n objects $\{p_1, \ldots, p_n\}$, a function $d(\cdot, \cdot)$, a distance B and a number k, the problem of LOW-DIAMETER-CLUSTERING is \mathcal{NP} -complete.

Consider the reduction k-COLOUR $\leq_{\mathcal{P}}$ LOW-DIAMETER-CLUSTERING. Given a black box to solve LOW-DIAMETER-CLUSTERING and an instance of k-COLOUR with a graph G = (V, E) and a number k, is there a colouring ν of all vertices using at most k colours such that $\nu(u) \neq \nu(v)$ if $(u, v) \in E$?

Let all vertices $v \in V$ correspond to objects p_v . Define the function $d(\cdot, \cdot)$ such that

$$d(p_v, p_u) = \begin{cases} cB & \text{if } (u, v) \in E \\ B/c & \text{if } (u, v) \notin E \\ 0 & \text{if } u = v \end{cases}$$

with some constant c > 1 for any B > 0. This concludes the construction.

Proof (\rightarrow) If there is a solution S to the LOW-DIAMETER-CLUSTERING problem then it is also a solution to k-COLOUR. Since no subset $P \in S$ contains any objects $p_v, p_u \in P$ such that $d(p_v, p_u) > B$ we know that $(u, v) \notin E$. Therefore, u and v can have the same colour. Colour the vertices in such a way that for $p_v \in P_i$ let $\nu(v) = C(P_i)$ where $C(\cdot)$ is some unique colour for each subset $P_i \in S$ such that $C(P_i) \neq C(P_j)$ if $i \neq j$.

Proof (\leftarrow) If there is a solution to the k-COLOUR problem then it is also a solution to LOW-DIAMETER-CLUSTERING. Since $\nu(v) \neq \nu(u)$ for any vertices $u, v \in V$ such that $(u, v) \in E$ we know that $d(p_v, p_u) > B$. Therefore, p_v and p_u can not be in the same subset $P \in S$. Cluster the objects such that for each colour c_1, \ldots, c_k define subsets P_1, \ldots, P_k and let $p_v \in P_i$ if $\nu(v) = c_i$.